Friday, September 19, 2014

UDP RSS update: ixbge(4) turned out to have issues..

I started digging deeper into the RSS performance on my home test platform. Four cores and one (desktop) socket isn't all that much, but it's a good starting point for this.

It turns out that there was some lock contention inside netisr. Which made no sense, as RSS should be keeping all the flows local to each CPU.

After a bunch of digging, I discovered that the NIC was occasionally receiving packets into the wrong ring. Have a look at tihs:

Sep 12 08:04:32 adrian-hackbox kernel: ix0: ixgbe_rxeof: 100034:
m=0xfffff80047713d00; flowid=0x21f7db62; rxr->me=3
Sep 12 08:04:32 adrian-hackbox kernel: ix0: ixgbe_rxeof: 100034:
m=0xfffff8004742e100; flowid=0x21f7db62; rxr->me=3
Sep 12 08:04:32 adrian-hackbox kernel: ix0: ixgbe_rxeof: 100034:
m=0xfffff800474c2e00; flowid=0x21f7db62; rxr->me=3
Sep 12 08:04:32 adrian-hackbox kernel: ix0: ixgbe_rxeof: 100034:
m=0xfffff800474c5000; flowid=0x21f7db62; rxr->me=3
Sep 12 08:04:32 adrian-hackbox kernel: ix0: ixgbe_rxeof: 100034:
m=0xfffff8004742ec00; flowid=0x21f7db62; rxr->me=3
Sep 12 08:04:32 adrian-hackbox kernel: ix0: ixgbe_rxeof: 100032:
m=0xfffff8004727a700; flowid=0x335a5c03; rxr->me=2
Sep 12 08:04:32 adrian-hackbox kernel: ix0: ixgbe_rxeof: 100032:
m=0xfffff80006f11600; flowid=0x335a5c03; rxr->me=2
Sep 12 08:04:32 adrian-hackbox kernel: ix0: ixgbe_rxeof: 100032:
m=0xfffff80047279b00; flowid=0x335a5c03; rxr->me=2
Sep 12 08:04:32 adrian-hackbox kernel: ix0: ixgbe_rxeof: 100032:
m=0xfffff80006f0b700; flowid=0x335a5c03; rxr->me=2



The RX flowid was correct - I hashed the packets in software too and verified the software hash equaled the hardware hash. But they were turning up on the wrong receive queue. "rxr->me" is the queue id; the hardware should be hashing on the last 7 bits. 0x3 -> ring 3, 0x2 -> ring 2.

It also only happened when I was sending traffic to more than one receive ring. Everything was okay if I just transmitted to a single receive ring.

Luckily for me, some developers from Verisign saw some odd behaviour in their TCP stress testing and had dug in a bit further. They were seeing corrupted frames on the receive side that looked a lot like internal NIC configuration state. They figured out that the ixgbe(4) driver wasn't initialising the flow director and receive units correctly - the FreeBSD driver was not correctly setting up the amount of memory each was allocated on the NIC and they were overlapping. They also found a handful of incorrectly handled errors and double-freed mbufs.

So, with that all fixed, their TCP problem went away and my UDP tests started properly behaving themselves. Now all the flows are ending up on the right CPUs.

The flow director code was also dynamically programming flows into the NIC to try and rebalance traffic. Trouble is, I think it's a bit buggy and it's likely not working well with generic receive offload (LRO).

What's it mean for normal people? Well, it's fixed in FreeBSD-HEAD now. I'm hoping I or someone else will backport it to FreeBSD-10 soon. It fixes my UDP tests - now I hit around 1.3 million packets per second transmit and receive on my test rig; the server now has around 10-15% CPU free. It also fixed issues that Verisign were seeing with their high transaction rate TCP tests. I'm hoping that it fixes the odd corner cases that people have seen with Intel 10 gigabit hardware on FreeBSD and makes LRO generally more useful and stable.

Next up - some code refactoring, then finishing off IPv6 RSS!

 
 

1 comment: